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Abstract: We determine the holographic spectra of scalar mesons from the fluctuations

of the embedding of flavor D-brane probes in HQCD models. The models we consider

include a generalization of the Sakai Sugimoto model at zero temperature and at the

“high-temperature intermediate phase”, where the system is in a deconfining phase while

admitting chiral symmetry breaking and a non-critical 6d model at zero temperature. All

these models are based on backgrounds associated with near extremal Nc D4 branes and a

set of Nf ≪ Nc flavor probe branes that admit geometrical chiral symmetry breaking. We

point out that the spectra of these models include a 0−− branch which does not show up

in nature. At zero temperature we found that the masses of the mesons Mn depend on the

“constituent quark mass” parameter mc
q and on the excitation number n as M2

n ∼ mc
q and

M2
n ∼ n1.7 for the ten dimensional case and as Mn ∼ mc

q and Mn ∼ n0.75 in the non-critical

case. At the high temperature intermediate phase we detect a decrease of the masses of

low spin mesons as a function of the temperature similar to holographic vector mesons and

to lattice calculations.
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Whereas realizing confinement in dual holographic models of QCD (HQCD) is easy,

the incorporation of flavored chiral quarks and in particular chiral symmetry breaking is

more difficult. Sakai and Sugimoto [1] proposed a model that admits the two phenomena.

It is based on placing a set of Nf D8 and anti D8 probe flavor branes into the gravity

model of near extremal D4 branes [2, 3].

The mesonic spectra is one of the most important properties of hadron dynamics that

can be “measured” in the HQCD laboratory. The low spin mesons are associated with the

fluctuations of the fields that reside on the probe flavor branes, the vector mesons with the

U(Nf ) flavor gauge fields and the scalar mesons with the embedding of the probe branes.1

Here in this paper we focus only on scalar mesons. The motivation behind addressing this

problem are the following:

(i) To verify that the meson spectrum at zero temperature does not include tachyonic

modes. Had there been such modes it would have indicated that the system is

unstable. Since the model of [1] is based on placing branes and anti-branes one may

be worried that the system is unstable and hence the importance of this verification.

(ii) The spectrum of the scalar mesons has been determined already in [1]. However the

attempts to derive it in generalizations of the model where the asymptotic separation

of the brane anti-brane L is smaller than half of the circumference of the compactified

direction x4, namely for L ≤ πR failed for the symmetric modes [5, 6]

1High spin mesons are naturally described by semi-classical spinning string configurations [4]
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(iii) To determine the dependence of the spectrum on the excitation number n and the

parameter mc
q defined in (3.6) that is related to the constituent quark mass. In

addition one naturally would like to compare the explicit ratios of meson masses

that one deduces from any given HQCD model and the experimental data to get an

indication of how well the model describes real hadron physics.

(iv) To further examine the differences of physical properties extracted from critical mod-

els to non-critical models which were previously discussed in [5, 7, 8]. The spectrum of

scalar mesons was extracted also in other HQCD models [9 – 11]. For further reading

see [12] and references therein.

We can summarize the outcome of the paper as follows

• We were able to choose coordinates that avoid the singularities that were encountered

in previous works [5, 6] and determine the spectrum of both the anti-symmetric as

well as symmetric branches.

• We found that in the models examined and in particular the original model of [1]

the symmetric solutions correspond to scalar mesons of the form 0++ whereas the

anti-symmetric solutions correspond to 0−− mesons. This property which seems to

be in common to a HQCD models based on probe branes and anti-branes, contradict

the low lying spectrum in nature, there are no low lying 0−− mesons.

• At zero temperature we found that the masses of the mesons Mm depend on the

“constituent quark mass” mc
q and on the excitation number n as M2

m ∼ mc
q and

M2
m ∼ nα with α ∼ 1.7 for the ten dimensional case and as Mm ∼ mc

q and Mm ∼ nβ

with β ∼ 0.75 when a CS term is incorporated and β ∼ 1 without such a term in the

non-critical case. At the high temperature intermediate phase we detect a decrease of

the masses of low spin mesons as a function of the temperature similar to holographic

vector mesons and to lattice calculations.

The paper is organized as follows. We begin in section 1 with a brief review of the

holographic models we investigate. We summarize the main features of the model of Sakai

and Sugimoto at zero and finite temperature and an analogous six dimensional non-critical

model. In section 2 we describe the extraction of scalar mesons from the fluctuations

of the embedding. In particular we point out that in the coordinates introduced in [1]

the eigenvalue problem admits a singularity that prevents the numerical determination of

the eigenvalues. A different coordinate system is presented in section 3 which evades the

problem of the singularity. Using these coordinates, the spectrum of masses as a function

of the constituent mass and excitation number is derived. The spectrum of scalar mesons

that follows from a non critical model of near extremal D4 branes is analyzed in section 4.

Section 5 addresses the issue of parity and charge conjugation of the scalar mesons. It

is pointed out that the spectrum includes 0−− mesons which do not show up in nature.

Section 6 is devoted to the spectrum of mesons above the deconfining phase transition in

the “intermediate phase”. We then summarize the results and raise certain open questions.

– 2 –
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1. Review of the holographic models

1.1 The Sakai Sugimoto model

The model of [2], describes the near horizon limit of Nc D4-branes wrapping a circle in the

x4 direction with anti periodic boundary condition for the fermions. Into this background a

stack of Nf D8 is placed at x4 = 0 and a stack of Nf D̄8 is at the anti-podal point of the x4

circle [1]. Assuming Nf ≪ Nc one can overlook the modification of the metric and dilaton

due to the backreaction of the background by the Nf D8-D̄8 systems and continue to use

the metric and dilaton associated with the Nc D4 alone. Therefore the metric, dilaton and

the RR four form are given by

ds2 =

(

u

RD4

)3/2[

−dt2+δijdxidxj + f(u)dx2
4

]

+

(

RD4

u

)3/2[ du2

f(u)
+u2dΩ2

4

]

(1.1)

F4 =
2πNc

V4
ǫ4 , eφ = gs

(

u

RD4

)3/4

, R3
D4 = πgsNcl

3
s , f(u) = 1 −

(

uΛ

u

)3

Where V4 denotes the volume of the unit sphere Ω4 and ǫ4 its corresponding volume form.

ls is the string length and gs a parameter related to the string coupling. The x4 is the

compactified direction that is asymptotically transverse to the D8. The manifold spanned

by the coordinate u, x4 has the topology of a cigar where its tip is at the minimum value

of u which is u = uΛ. The periodicity of this cycle is uniquely determined to be

δx4 =
4π

3

(

R3
D4

uΛ

)1/2

= 2πR (1.2)

in order to avoid a conical singularity at the tip of the cigar. The classical profile of the

D8 probe brane in this background is given by the classical solution to the e.o.m of the

DBI action of that probe brane. The D8 DBI action is

SD8 = T8

∫

dtd3xdudΩ4e
−φ

√

−detĝ = T̃8

∫

dtd3xduu4

√

f(u)(∂ux4)2 +
R3

D4

u3f(u)
(1.3)

= T̃8

∫

dtd3xdx4u
4

√

f(u) +

(

RD4

u

)3 u′2

f(u)
(1.4)

where ĝ stands for the pullback metric on the D8 brane. The simplest way of solving this

e.o.m is by noting that the action is independent of x4 and so its Hamiltonian is conserved,

u4f(u)
√

f(u) +

(

RD4

u

)3
u′2

f(u)

= u4
0

√

f(u0) = const (1.5)

where we assumed that there is a point u0 where the curve u(x4), which describes the

profile of the D8 brane in the (u, x4) plane, has a minimum. At that point the D8 brane

bends, namely the D8-D̄8 join together. After some algebra one finds
(

∂x4

∂u

)

cl

=
1

f(u)( u
RD4

)3/2
√

f(u)u8

f(u0)u8
0

− 1
(1.6)
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Hence we find that the profile of the D8 brane probe is

x4(u) =

∫ u

u0

du

f(u)( u
RD4

)3/2
√

f(u)u8

f(u0)u8
0

− 1
(1.7)

where u0 is a constant of integration setting the lowest value of u to which the D8 brane is

extending. At that point the D8 brane joins the D̄8 brane and the brane is extended back

into the UV. The value of u0 also sets the asymptotic distance L between the position of

the D8 and D̄8 brane

L =

∫

dx4 = 2

∫ ∞

u0

du

u′ = 2(
R3

D4

u0

)1/2 ∫ ∞

1
dy

y−3/2

√

f(y)
√

f(y)
f(1)y

8 − 1
(1.8)

Hence we see

L ∝
(

R3
D4

u0

)1/2

(1.9)

For later use we define

γ =
u8

f(u)u8 − f(u0)u8
0

(1.10)

The DBI action then becomes

S = T8

∫

e−φ
√

|detĝ0| ∼
∫

d4xduγ1/2u5/2

1.2 Thermodynamics of the Sakai Sugimito model

In [13]2 a study of the thermodynamics of the Sakai Sugimito model was carried out using

the conjecture presented in [2].

The conjecture states that the thermodynamics of a field theory with a gravitational

dual is determined by taking into account the contribution to the saddle point approxima-

tion from all the gravitational backgrounds with the correct ’UV’ asymptotic, with com-

pactified Euclidean time direction of period β = 1
T and with anti-periodic boundary condi-

tions for the fermions along this direction. The temperature of the field theory is T = 1/β

and its properties are read from the manifold responsible for the most dominant contribu-

tion to the saddle point approximation, namely the one that has the lowest free energy.

Whenever one background looses its domination to another background as we vary the

temperature, a phase transition occurs in the dual field theory.

In [13] two manifolds were found to have the same ’UV’ asymptotic as the one of Sakai

and Sugimoto model, the background (1.1), and the same configuration only with the time

and x4 directions interchange.

ds2 =

(

u

RD4

)3/2

[−f(u)dt2+ δijdxidxj + dx2
4] +

(

RD4

u

)3/2[ du2

f(u)
+ u2dΩ2

4

]

(1.11)

2see also [14].
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with

f(u) = 1 −
(

uT

u

)3

(1.12)

and the temperature is given by

δt =
4π

3

(

R3
D4

uT

)1/2

= β (1.13)

The difference between the free energy densities of the two backgrounds is proportional to

N2
c [(2πT )6 − 1/R6].3 This means that when the circumference of the x4 cycle is smaller

than that of the time direction, namely when T < 1/2πR the background (1.1) is the

dominant one, while when the opposite occurs and T > 2πR the action of (1.11) will

dominate. At the temperature T = 1/2πR the two actions are the same since the two

backgrounds are different by the labeling of the coordinates, so at T = Tc = 1/2πR the

system has a first order phase transition. In [13] it was argued that in the dual field theory,

the physical interpretation of this phase transition is a transition from a confined phase

at T < 1/2πR to a deconfined one at T > 1/2πR. This can be seen via a computation

of the quark anti-quark potential [15] in the two backgrounds. Another indication to this

interpretation is that the renormalized free energy of the low temperature phase shows a

N0
c behavior while that of the high temperature phase shows a N2

c one. Hence from now

on we will denote Tc = Td.

At the high temperature phase there is another possible classical solution to the profile

of the D8 brane which is a configuration with constant x4, namely x4(u) = 0, L.4

Now since the bulk free energy is the same for the two configurations of the D8 branes,

the difference between the free energy of the D8 probes determines which of the two

configurations is the preferable one for a given temperature. It turns out that the transition

between the two configuration depends on the parameter yT = u0

uT
, and its value at the

phase transition turns out to be yc
T ∼ 0.73572.

Using eq. (1.8) we find Lc = 0.751

(

R3

D4

u0

)1/2

, hence at the critical point yT = yc
T the

critical temperature is set by the asymptotic distance between the branes (setting RD4 = 1)

Tc =
3

4π
u

1/2
T =

3

4π
(yc

T u0)
1/2 = 0.154/L (1.14)

The field theory sees this transition as chiral symmetry restoration at high temperature.

This interpretation is natural since the D8 branes are now disconnected and there is an

U(Nf ) × U(Nf ) global symmetry.

Hence we will denote this critical temperature as TχSB. Note that this only happens

at the high temperature phase so there is still the condition TχSB = 0.154/L > 1/2πR.

3Of course in our model there are also D8 brane which their DBI action will contribute to the total free

energy of the configuration as well, but this is sub-leading to the bulk action since the bulk action is of

order N2
c and the contribution of the D8 is of order Nc ·Nf which is negligible in the probe approximation

4This configuration was not possible in the low temperature, but in the high temperature phase the time

circle shrink to zero at u = uΛ and so the D8 brane can just smoothly end there.
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So if L > 0.97R, we find that Td is always higher than TχSB, and so deconfinement and

chiral symmetry restoration phase transition happen together. We see that in this model

χSB and confinement appear independently of one another as a result of the existence of

the free parameter L coming from the 5d nature of the field theory.

1.3 Non critical holographic model

A non critical model with very similar properties to the Sakai-Sugimoto model was pre-

sented in [5, 7],5 this model consists of a non-extremal configuration of Nc D4 branes placed

in a six dimension space-time with one of the D4 coordinates taken to be periodic with

anti periodic boundary conditions for the fermions.

The metric, dilaton and RR six-form field take the form [7]

ds2 =

(

u

RAdS

)2

dx2
1,3 +

(

RAdS

u

)2 du2

f(u)
+

(

u

RAdS

)2

f(u)dx2
4 (1.15)

F(6) = Qc

(

u

RAdS

)4

dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ du ∧ dx4

eφ =
2
√

2√
3Qc

; R2
AdS =

15

2

with

f(u) = 1 −
(

uΛ

u

)5

(1.16)

where Qc is proportional to Nc, the number of color D4 branes. In order to avoid conical

singularity the periodicity of the cycle of x4 is set to be:

x4 ∼ x4 + δx4 ; δx4 =
4πR2

AdS

5uΛ
(1.17)

Of course the curvature of order one of this background makes the leading order super-

gravity an unjustified approximation to string theory on this background. Nevertheless its

believed that at least the extremal model due to its symmetries, is indeed a good back-

ground for the study of non-critical string theory [16]. Now we place Nf D4 branes which

are transverse to the S1 cycle and extend up to infinity in the u direction. The properties

of the four dimensional low energy effective field theory living on the intersection of these

color and flavor D4 then seems to be very similar to those found at the Sakai Sugimoto

model. Thus we would like to study its spectrum of scalar excitations and check if there is

no tachyon in the model.

Just like in the critical model the D4 brane may bend on the (u, x4) cigar and in order to

find its profile one must solve the e.o.m of the x4 coordinate. This e.o.m is derived from the

action of the flavor D4 branes, namely the DBI action plus the CS term which are given by

SD4 = −T4

∫

d5xe−φ
√

− det(ĝ) + T4ã

∫

P (C(5)) (1.18)

5For other non-critical SUGRA models with flavor see [16 – 20].
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Following similar steps to those taken in the previous section we find

x4,cl(u) =

∫ u

u0

(u5
0f

1/2(u0) − au5
0 + au′5)du′

( u′

RAdS
)2f(u′)

√

u′10f(u′) − (u5
0f

1/2(u0) − au5
0 + au′5)

(1.19)

where a = 2√
5
.

2. Fluctuation of the embedding and scalar mesons

We now turn our attention to the study of the fluctuation of the D8 brane around its

classical profile. As was mentioned in the introduction, one has a twofold interest in these

fluctuations:

(i) They correspond to scalar mesons in the dual gauge theory.

(ii) Tachyonic modes of the fluctuation signals an instability of the system.

We start by expanding the x4 coordinate around its classical value and define the

fluctuation ξ(u, xµ) as follows:

x4(u, xµ) = x4(u)cl + ξ(u, xµ) (2.1)

Substituting this into the action (1.3) and expanding to quadratic order in ξ we find the

following action for the fluctuations

S ∝ 1

2

∫

d4xdu

{

u5/2R3
D4γ

−1/2ηµν∂µξ∂νξ + u11/2γ−3/2(∂uξ)2
}

(2.2)

where γ is defined in (1.10). We now introduce the following mode expansion

ξ(u, xµ) =

∞
∑

n=0

fn(xµ)ξn(u) (2.3)

Using the symmetries along the xµ directions we have

ηµν∂µ∂νfn = −m2
nfn (2.4)

The e.o.m for the ξn modes reads

∂u[(u11/2γ−3/2)∂uξn] = −m2
nR3

D4u
5/2γ−1/2ξn (2.5)

or in its canonical form
{

∂2
u +

[(

12

u
− 15

2u4

)

γ − 13

2u

]

∂u

}

ξn = −m2
nR3

D4γ

u3
ξn (2.6)

For u0 ≫ uΛ, f(u) → 1, the e.o.m simplifies and the qualitative behavior of mn can

be determined by using dimensional arguments [13]. Define the dimensionless parameter

v = u
u0

then for the limit u0 ≫ uΛ where f → 1

γ → 1

1 − 1
v8

(2.7)

– 7 –
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The e.o.m in terms of v reads

∂v(v
11/2γ−3/2)∂vξn = −m2

n

R3
D4

u0
v5/2γ−1/2ξn (2.8)

Since the L.H.S is dimensionless so must be the R.H.S and hence

m2
n ∝ u0

R3
D4

(2.9)

Using the relation (1.9) between u0 and L we find

mn ∝ 1

L
(2.10)

while the mass of the glueball is related to mgb ∼ 1
R . For the case uΛ = u0, L = πR so

the glueball and mesons masses have the same scale. However in the general case where

u0 > uΛ there are two different scales mn ∼ 1
L > 1

R ∼ mgb.

In order to find the exact spectrum of the eigenvalues of (2.6) one can use the ’shooting’

technique which is implemented by solving the eigenvalue problem as a second order o.d.e

with boundary conditions given in two different points (a two point boundary problem).

This is possible if there are two different points on the grid in which we know ξ and ξ′. Then

ξ and ξ′ at one of these two points may serve as boundary conditions from which we can

integrate from and try to match it to some single boundary condition combined from ξ and

ξ′ on the other point,6 of course second order eq. can only satisfy two boundary condition

so the matching is only possible for the correct eigenvalue! Since the correct eigenvalue is

not previously known one shoots with different eigenvalues until the matching is obtained.

In our case we can find the boundary value at the asymptotic z → ∞ using the

asymptotic expansion of the normalizable solution of eq. (2.6) at z → ∞.7

The second point would be z = 0 (u = u0), since (2.6) is symmetric under z → −z

we can split the spectrum for symmetric and anti-symmetric modes under this reflection.

This splitting of the spectrum will be of great phenomenological importance when we shall

discuss the parity and charge conjugation of these modes as scalar mesons. In practice the

boundary condition that preserve only the symmetric mode is ∂zξn(z = 0) = 0, and for

anti-symmetric ξ we shall demand the boundary condition ξn(z = 0) = 0.

However there is a problem with these coordinates at u = u0 since,
dx4,cl

du |u=u0
→ ∞ (

see eq. (1.6)). An odd perturbation to the classical configuration will cause no change in

the shape of this singularity but an even one will, and so will also have a singular derivative.

This problem is reflected in the singularity of the e.o.m (2.6) at u → u0. To see this

behavior explicitly we change coordinates to a dimensionless parameter z as follows

u3 = u3
0 + u3

Λz2 (2.11)

6Since the o.d.e is linear the two boundary values can differ by a different normalization of ξ so in

practice one should use a clever boundary condition at the second point such that it is invariant to the

normalization, for instance one can use ξ′/ξ.
7The asymptotic solutions for the e.o.m are obtained by series expansion at z ≫ 1, for u0 = uΛ the first

order solutions are ξn ∼ O(1) and ξn ∼ O(z−1) [1], the first in a non-normalizable one while the other is.

The same is true in our case where u0 > uΛ.

– 8 –



J
H
E
P
0
8
(
2
0
0
8
)
0
8
2

the eigenvalue problem (2.6) then becomes

{

∂2
z +

[

5u3
Λz

u3
0 + u3

Λz2
− 1

z
− γ′u3

Λz

(u3
0 + u3

Λz2)2/3γ

]

∂z

}

ξn = − m2
nR3

D4u
6
Λγz2

(u3
0 + u3

Λz2)7/3
ξn (2.12)

where γ′ stands for the derivative of γ with respect to u. Since

γz→0 =

3u6
0

u3

Λ
(8u3

0
−5u3

Λ
)

z2
; γ′

z→0 = −
9u8

0

u6

Λ
(8u3

0
−5u3

Λ
)

z4
(2.13)

we find that this equation has a regular singularity at z = 0!

Indeed it was already noticed in [6] that by employing the ’shooting’ technique only

half of the spectrum could be found, namely only the odd modes were seen while the even

ones could not be obtained, these modes that should have been obtained by integrating the

normalizable solution (ξn ∼ 1
z ) from the asymptotic the symmetric boundary conditions to

∂zξn(z = 0) = 0. (2.14)

turned out to be singular and could not be integrated. In [1] only the special case of

u0 = uΛ was analyzed, in this case since limu0→uΛ
∂uxcl = 0, a smooth and nonsingular

transformation into cartesian coordinates is allowed via

u3 = u3
Λ + u3

Λ(z2 + y2) ; x4 = R arctan

(

y

z

)

(2.15)

The corresponding action for y is (after setting uΛ = 1)

S ∼
∫

d4xdz

[

(∂µy)2

u(z)
+ u(z)3(∂zy)2 + 2y2

]

(2.16)

inserting the expansion y =
∑

n=1 ϕn(xµ)yn(z) the e.o.m for yn is

∂2
zyn +

2z

1 + z2
∂zyn − 2yn

1 + z2
=

m2
n

(1 + z2)4/3
yn (2.17)

which is non-singular. For the more general case of u0 > uΛ we were unable to find a

similar coordinate transformation and hence we follow a different approach described in

the next section.

3. A regular e.o.m for the scalar fluctuation at the low temperature phase

As we have seen above, we could not obtain the even modes of the fluctuation8 around the

classical curve because
dx4,cl

du diverges at u = u0. The issue of choosing a direction along

which one should analyze the fluctuations, has been discussed in the context of the stringy

description of the Wilson line [21]. It was found that the safest approach is to use the

fluctuation in the direction which is normal to the classical configuration. For our case the

8If the classical curve x4,cl was odd, then the odd mode would become singular.
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(A) (B)

Figure 1: (A) The mass squared m2
1 of the lowest excited symmetric mode as a function of mc

q

(RD4 = uΛ = 1)

Figure 2: (B) The mass squared m2
2 of the lowest excited antisymmetric mode as a function of mc

q

(RD4 = uΛ = 1)

Figure 3: (A) The tower of the mesons squared mass m2
n in the low temperature phase (RD4 =

uT = 1)

normal to the classical configuration at the tip u = u0 is along the u direction. Thus from

here on we study the fluctuation in the u direction, that is

u(x4, x
µ) = ucl(x4) + ξ(x4, x

µ) (3.1)
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our classical curve would be ucl(x4) and as can be seen from (1.6) we have ducl

dx4
|x=0 = 0 so

the point u(x4 = 0) = u0 poses no problem now! The quadratic action for these fluctuations

is (after setting uΛ = 1)

S =
1

2

∫

dx4

{

a0

u11f3
(∂x4

ξ)2 +
1

u3f
(∂µξ)2 (3.2)

−(11u14 + 18a0 + 3u11 − 12u8 − 27a0(u
3 + u6) − 2u5)

2u16f3
ξ2

}

where a0 = u8
0f(u0) and it should be understood that u = ucl(x4) and its formal expression

is

u(x4) =

∫ x4

0
dx4f(u)(

u

RD4
)3/2

√

f(u)u8

f(u0)u8
0

− 1 (3.3)

after plugging a mode expansion the e.o.m in its canonical form is

∂2
xξn −

(

11

u
+

9

uf

)

ux∂xξn − f2u8m2
n

a0
ξn (3.4)

+
(11u14 + 18a0 + 6u11 − 12u8 − 27a0(u

3 + u6) − 2u5)

2a0u5
ξn = 0

where ux = ∂x4
ucl. Since there is no analytic expression for the integral in (3.3), we ob-

tained u(x4) numerically during the integration of eq. (3.4) when ’shooting’ to find the

eigenvalues of (3.4).

The resulted spectra are summarized in figures 1, 2 and 3. The following properties

characterize these spectra

• The first observation one can make is that for u0 = uΛ our results for the symmetric

and anti-symmetric lowest lying states match those of [1].

m2
s = 3.3 ; m2

as = 5.3 (3.5)

• The figures 1 and 2 describe the dependence of the squared mass of the first excited

symmetric and anti-symmetric states as a function of the “constituent quark mass”

defined in [5] and [4], as follows

mc
q =

1

2πα′

∫ u0

uΛ

√−gttguudu =
1

2πα′

∫ u0

uΛ

f−1/2(u)du (3.6)

This parameter relates to the constituent quark mass and not to the current algebra

(QCD) mass, since even when it is turned on the fluctuations that correspond to the

pions are massless. In fact the quantity dual to the constituent quark mass should

associate with mc
q plus a constant term which is independent of u0 since already for

u0 = uΛ the mesons are massive and hence there is a non-trivial constituent mass.

This assignment is also in agreement with the semi-classical description of high spin

mesons [4] and their stringy split into two lower mass mesons [22]. ¿From these
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figures we see that indeed for u0 > uΛ the square of the mass of the scalars grows

linearly with mc
q. This is to be contrasted with the results found in [5] for vector

mesons of non-critical models where the mass itself is found to be linear with the mc
q

( see also down in section 5.)

• We have also determined the spectrum of the higher excited mesons, both the sym-

metric as well as the anti-symmetric ones. The dependence of the squared masses on

the excitation number for various values of mc
q is drawn in figure 3. The linear fits

to these curves are given by

m2
n = 3.3 + 1.6n1.7 mc

q = 0 (3.7)

m2
n = 10.5 + 6.5n1.789 mc

q = 9.3

m2
n = 15.8 + 9.5n1.818 mc

q = 14.3

Stringy modes are characterized by the well known m2 ∼ n behavior. We thus see

that the scalar meson spectra that follows from the model of [1] do not correspond

to stringy modes. This is of course of no surprise since it follows from a low energy

effective field theory and not from a semi-classical treatment.

• Last by not least we see from figure 1 that the lowest scalar excitation remain non-

tachyonic for all values of u0 which serves as partial evidence for the stability of the

Sakai Sugimoto model.

4. Scalar mesons in a non critical holographic model

We would like now to find the masses of the scalar modes associated with the fluctuations

of the probe brane around the classical profile in the non-critical gravity background of [7].

Using the background (1.15) in an effective action that includes the DBI plus the CS term

SCS ∼
∫

D4
C5 =

∫

D4

u5

R4
AdS

(4.1)

we can easily find that the profile of the D4 prob branes is given by

x4,cl(u) =

∫ u

u0

du′
u5

0f
1/2(u0) + 2√

5
(u′5 − u5

0)
(

u′

RAdS

)2

f(u′)
√

u′10f(u′) − (u5
0f

1/2(u0) + 2√
5
(u′5 − u5

0))
2

(4.2)

substitution a fluctuation of the form (3.1) for x4 and expanding the action up to linear

and quadratic term, we find the e.o.m for the fluctuation modes. However, it was found

in [8] that including the CS does not yield a sensible thermal phase diagram and hence we

discuss separately an effective action that includes only a DBI action and one with both

the DBI and CS terms. We start first with the former case: Analyzing the spectrum in a

similar manner to the analysis of section 3 we find that the fluctuations are subjected to

the following eigenvalue equation

∂u(u4γ−3/2)∂uξn = −R4
AdSm

′2
n u2

γ1/2
ξn (4.3)

– 12 –
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Like in the critical case, for u0 ≫ uΛ the qualitative behavior of m′
n can be seen by

changing the variable u into the dimensionless parameter y = u
u0

. At the limit u0 ≫ uΛ we

find that f(u) → 1 and so

γ → 1

u2
0(y

2 − 1
y8 )

(4.4)

and find that in terms of the dimensionless parameter y the e.o.m is now

∂y(y
4γ−3/2)∂yξn = −R4

AdSm
′2
n y2

u2
0γ

1/2
ξn (4.5)

Since the L.H.S is dimensionless so is the R.H.S and we find

m′2
n ∝ u2

0

R4
AdS

(4.6)

Note that due to the different background now L ∼ R2

AdS

u0
and hence again we get that

m′
n ∼ 1

L . However in terms of mc
q the asymptotic behavior is m′

n ∼ mc
q and not m′

n
2 ∼ mc

q

as was the case for the mesons of the critical model.

Repeating the exact same steps as for the critical case we find that the quadratic

action for fluctuation in the x4 direction around the classical curve leads to an e.o.m which

is singular at u = u0 and as a consequence the attempt carried in [5] to obtain the spectrum

of the even modes had indeed failed. And so like in the critical case we turn to study the

fluctuation in the u direction instead. The action for the fluctuation is then

S =
1

2

∫

dx4

{

a
3/2
0

u14f3
(∂x4

ξ)2 +
a

1/2
0 R4

AdS

u4f
(∂µξ)2 (4.7)

−a
1/2
0 (u5 + 36a0 − 63u10 + 14u20 + 48u15 − 92a0u

5 − 44a10
0 )

2u22f3

}

and indeed this action leads to a regular e.o.m at u(x4 = 0) = u0.

∂2
xξ −

(

14

u
+

15

u6f

)

ux∂xξ +
u10f2R4

AdS

a0
ηµν∂µ∂νξ

+
(u5 + 36a0 − 63u10 + 14u20 + 48u15 − 92a0u

5 − 44a0u
10)

2u8a0
ξ = 0 (4.8)

Using the shooting technique we found the eigenvalues of different modes of the fluctuation

for various values of mc
q, our finding are summarized in figures 4, 5. One can see that the

masses m′
1 and m′

2 grow linearly with mc
q as expected from (4.6). At u0 = uΛ = 1 we find.9

m′2
s = 1.51 ; m′2

as = 2.07. (4.9)

which is in agreement with [5].10 Again we also studied the dependence of the mass on the

excitation number, the results are summarized in figure 6 and are:

mn = 1.51 + 2.32n1.04 mc
q = 0 (4.10)

– 13 –
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q
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m'

0

1

2

3

4

5

6

7

8

Non critical model:  Mass of the symmetric mode :  m'  vs m
q

(A) (B)

Figure 4: (A) The mass m′

1 of the lowest excited symmetric mode of the non-critical model as a

function of mc
q (RAdS = uΛ = 1).

Figure 5: (B) The mass m′

2 of the lowest excited antisymmetric mode of the non-critical model

as a function of mc
q (RAdS = uΛ = 1).

Figure 6: The tower of mesons masses m′

n in the non-critical model

mn = 13.5 + 4.95n1.04 mc
q = 9.3

9Our results are for RAdS = 1.
10To keep contact with the results in [5] we had renormalized the masses by the factor 2

5
coming from
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Non critical model with CS term (a=1):  The mass of the first excited 
symmetric mode vs. m

q
  .

m
q

1 2 3 4

M
2

3

4

5

6

7

8

9

 Non critical model with CS term (a=1) : The mass of the first 
excited anti-symmetric mode vs. m

q
  .

(A) (B)

Figure 7: (A) The mass m′

1 of the lowest excited symmetric mode of the non-critical model with

CS term included as a function of mc
q .

Figure 8: (B) The mass m′

2 of the lowest excited antisymmetric mode of the non-critical model

with CS term included as a function of mc
q .

Thus we see that both in terms of the dependence on n as well as the dependence

on mc
q the scalar meson spectra admit a different behavior than that of the critical model

of [1]. A similar behavior has been observed for the vector mesons in [5].

Next we consider the case where the effective action includes both the DBI and CS

terms. Including now the CS term (with its full strength ã = 1) the quadratic action for

the fluctuation becomes

S =
1

2

∫

dx4

{

B3/2

u14f3
(∂x4

ξ)2 +
B1/2R4

AdS

u4f
(∂µξ)2 (4.11)

−B1/2(u5 + 36B − 63u10 + 14u20 + 48u15 − 92Bu5 − 44B10)

2u22f3
− 20√

5
u3ξ2

}

where B = (u5
0f

1/2(u0) − u5
0 + u5)2 and the e.o.m is then

∂2
xξ −

(

14

u
+

15

u6f
− 15u4

B1/2

)

ux∂xξ +
u10f2R4

AdS

B
ηµν∂µ∂νξ

+
(u5 + 36B − 63u10 + 14u20 + 48u15 − 92Bu5 − 44Bu10)

2u8B
ξ +

20u3

√
5B3/2

ξ = 0 (4.12)

With the Chern Simon taken into account the dependence of the mass squared on the

excitation number is now to be read from figure 9 to be:

mn = 2.07 + 5.42n0.75 mc
q = 0 (4.13)

the change of variables u → z.
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The non critical model with CS term (a=1): The tower of the mesons 
mass vs. their excitation number.

mq = 0 , 9.3 in RB order

Figure 9: The tower of mesons masses m′

n in the non-critical model with CS term included

mn = 16.49 + 1.01n0.75 mc
q = 9.3

The dependence on mc
q is described in figures 7 and 8.

5. Parity and charge conjugation

In order to compare the resulting spectra from both the critical and non-critical models,

we first have to identify the “quantum numbers” of the states that correspond to the

fluctuations. More explicitly we have to determine the operations in the gravity models

which correspond to charge conjugation and parity transformations. In the model of [1]

they were defined as follows: The charge conjugation operation associates with exchanging

the left and right handed quarks which maps into the interchange of a D8 and an anti D8 or

differently transforming z → −z. Parity transformation in the five-dimensional space-time

spanned by xi, z where i = 1, 2, 3 means the following transformation (xi, z) → (−xi,−z).

For the generalized setup with u0 > uΛ we can still define the coordinate z as follows

u3 = u3
0 + uΛz2 (5.1)

Note the difference with respect to (2.11) since here we take z to have dimension of length.

With this definition of the z coordinate the discrete transformations of [1] remain in tact.

The effective action on the probe brane has to be invariant under both parity and charge

conjugation. The DBI part (2.2) is quadratic in ξ and hence cannot determine the right

transformation of the fluctuation modes. The situation with the CS term is different.

Recall that the CS term has the form

SCS ∼
∫

D8
F ∧ F ∧ C5 =

∫

S4

F ∧ F ∧
∫

d4xdzC5 =

∫

S4

F ∧ F

∫

d4xdzξ(xµ, z) (5.2)
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the last step we have used the explicit form of the C5

C5 = ξ(xµ, z)dx0 ∧ . . . dx3 ∧ dz (5.3)

In order for this term in the action to be invariant under parity and charge conjugation it is

clear that ξ(xµ, z) has to be even under both charge conjugations and parity transformation.

Now since ξ(x, z) =
∑

n fn(xµ)ξn(z) we conclude that the map between the fluctuation

modes and scalar particles is the following

symmetric ξn → 0++ mesons

antisymmetric ξn → 0−− mesons (5.4)

For the non-critical model again the DBI action does not determine the transformations

of ξ under parity and charge conjugation. We have argued above based on [8] that a CS

term of the form (4.1) should not be incorporated. Thus there is no way to this order to

determine the transformation of ξ.

Without the constraint from the CS term we may have that ξ is even or odd under

charge conjugation and parity transformations. In the latter case the assignments of (5.4)

have to be reversed, namely symmetric ξ corresponds to 0−− and antisymmetric ξ to 0++

Next we want to compare the spectra to mesons observed in nature. It is well known

that scalar mesons in nature are either 0++ or pseudo scalars of the form 0−+ and there are

no observed low lying mesons of the form 0−−. Thus there is a serious mismatch between

the holographic scalar mesons extracted from models with flavor branes anti-branes of

critical models and with the observed mesons in nature. We will come back to this issue

in the conclusions.

6. Scalar mesons in the intermediate temperature phase

The background that corresponds to the deconfined phase, namely T > 1/2πR is given

in (1.11). As was shown in [13] this deconfined background can admit also a phase where

chiral symmetry is broken, the so called “intermediate phase” We now analyze the spectrum

of the scalar mesons in this phase. Since the procedure of extracting the scalar meson is

identical to that of the low temperature analysis of the previous sections we present the

final results for the spectra of masses. The spectra are presented in figures 10, 11 and 12.

The main features that these spectra admit are the following

• As can be seen, at the phase transition T = Td the values of the masses are (for the

values uT = 1, u0 = 8)

m2
s(T = Td) = 8.36 ; m2

as(T = Td) = 45.96 (6.1)

while in the low temperature phase at the point of phase transition with uΛ → uT = 1,

u0 = 8 the masses are

m2
s(T = Td) = 8.40 ; m2

as(T = Td) = 46.00 (6.2)

We see a very small jump in the masses at the transition point, the same as was seen

for the vectors in [6]
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(A) (B)

Figure 10: (A) The mass squared m2
1(T ) of the lowest excited symmetric mode as a function of

T/Td (u0 = 8, RD4 = 1 and R = 2/3)

Figure 11: (B) The mass squared m2
2(T ) of the lowest excited antisymmetric mode as a function

of T/Td (u0 = 8, RD4 = 1 and R = 2/3)

Figure 12: The tower of mesons squared mass m2
n in the intermediate phase

• While in the low temperature confining phase the masses of the mesons are tem-

perature independent since the background in this phase does not depend on the

temperature, the masses of the mesons do depend on the temperature in the inter-

mediate deconfined phase. As was observed in Lattice simulations and was found
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also for holographic vector mesons [6], the masses decrease as a function of the tem-

perature. The symmetric mesons decrease at the chiral symmetry phase transition

temperature T = TχSB to ∼ 60% percent of their values whereas the antisymmetric

ones to ∼ 80%. This drop off is much more significant than for the vector mesons of

the critical model [6].

• Note that it is only consistent to increase the temperature up to where the next phase

transition occurs and chiral symmetry is restored.

This happens at T = TχSB (for the choice u0 = 8 we found that TχSB = 2.44Td),

then the merged D8-D̄8 breaks into a separate pair of D8-D̄8. We can also see from

figure 10 that if we continue to increase the temperature beyond TχSB then at some

point the scalar mode becomes Tachyonic, signaling that this background is no longer

stable at this temperature as indeed we know.

• Like in the low temperature we also checked the squared masses dependence on the

excitation number (see figure 12). This was found to be:

m2
n = 8.3 + 6.4n1.7 T = Td (6.3)

m2
n = 7.6 + 6.9n1.65 T = 2Td

7. Conclusions

In this paper we dealt with technical problems faced in [22, 5] and succeeded to obtain the

holographic mass spectra of the scalars in the low and intermediate phases of the chiral

symmetry broken phase of the critical model and also of those of the non-critical. Let us

summarize the results of this work and mention certain open question.

• There is a difference between the dependence of the mass of the scalar mesons on

the “constituent mass parameter” mc
q. In the ten dimensional models one finds a

m2 ∝ mc
q relation (see figures 1, 2 for the first two excited modes), whereas for the

non-critical model the relation is m ∝ mc
q (see figures 4, 5 and 7, 8).

• Both the critical models and the non-critical one do not admit a Regge/stringy be-

havior of M2
n ∼ n. This is not unexpected since the stringy excitations are not visible

in the low energy effective field theory.

• One can compare the ratio of the low lying mesons (both vector and scalar mesons)

to those observed in nature. Table 1 presents such a comparison. It is interesting to

note that turning on a constituent mass mc
q improves the ratios with respect to those

for zero mc
q.

• The holographic spectra of the critical models admit a branch of scalar mesons of

type 0−−. These do not exist in nature. It seems to be a severe shortcoming of

these holographic models. This difference cannot be attributed to the fact that we

consider large Nc. It will be interesting to investigate the question of how generic
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experiment D4-D8 at mc
q = 0 / 0.38 Non-critical at mc

q = 0 / 0.16

m2
v,2/m

2
v,1 2.51 2.4 / - 2.8 / 2.62

m2
v,3/m

2
v,1 3.56 4.3 / - 5.5 / 5.29

m2
s/m

2
v,1 3.61 4.9 / 3.63 4.1 / 3.65

m2
v,2/m

2
s 0.7 0.49 / 0.62 0.67 / 0.75

Table 1: A comparison with experimental data where the best fitted mc
q is presented vs. mc

q = 0

(for the critical case we have found that there is no improvement in ratios of the vectors so we left

these entries empty.).

this situation is and whether one can construct a mechanism to project it out from

the low lying spectra.

• The behavior of the scalar mesons at finite temperature in the intermediate phase

is similar to that of the vector meson in the model of [6]. However the decrease of

the mass with increasing temperature is more dramatic for the scalar mesons. It is

interesting to check if a similar phenomenon occurs also in lattice simulations.
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